game/data/shaders/pbrFragment.glsl
2022-07-22 15:02:42 +01:00

127 lines
3.6 KiB
GLSL

#version 330 core
out vec4 FragColor;
in vec2 ourTexCoord;
in vec3 ourNormCoord;
in vec3 WorldPos;
// TODO: make temporary hard coded world/camera pos dynamic
//uniform vec3 WorldPos ;
uniform vec3 CameraPos;
uniform int tick;
//vec3 WorldPos = vec3(0.0f, 0.0f, 0.0f);
//vec3 CameraPos = vec3(0.0f, 0.0f, -1.0f);
//TODO: make these values rely on associated textures.
vec3 albedo = vec3(0.8f, 0.8f, 0.8f);
//float metallic = sin(tick / 60 * 0.3f);
//float roughness = sin(tick / 60 * 0.3f);
//float ao = sin(tick / 60 * 0.8f);
//float metallic = 0.3f;
float roughness = 0.3f;
float ao = 0.8f;
// Handle multiple textures from the Mesh Object (Might not even be used)
uniform sampler2D texture_diffuse1;
uniform sampler2D texture_diffuse2;
uniform sampler2D texture_specular1;
uniform sampler2D texture_specular2;
uniform sampler2D texture_metalness1;
uniform sampler2D texture_metalness2;
// PBR functions from learnOpenGL.com
const float PI = 3.14159265359;
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
void main()
{
//albedo = vec3(texture(texture_diffuse1, ourTexCoord));
// float metallic = 1 - texture(texture_metalness1, ourTexCoord).r;
float metallic = 1 - texture(texture_metalness1, ourTexCoord).r;
// Establish ambient lighting
float ambientStrength = 0.1;
// Establish a temporary hard coded light position
vec3 lightPosition = vec3( (sin(tick / 600.0)*2), 1 + sin(tick / 600.0)*2, 2.0);
//vec3 lightColor = vec3(1.0, 1.0, 1.0) - sin(tick / 90);
vec3 lightColor = vec3(1.0, 1.0, 1.0);
// Normal light maths
vec3 N = normalize(ourNormCoord);
vec3 V = normalize(CameraPos - WorldPos);
vec3 Lo = vec3(0.0f);
//TODO: Loop through the code up to ambient definition for each light
vec3 L = normalize(lightPosition - WorldPos);
vec3 H = normalize(V - L);
float distance = length(lightPosition - WorldPos);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = lightColor * attenuation;
//Cook-Torrence BRDF
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001;
vec3 specular = numerator / denominator;
//Next bit
vec3 kS = F;
vec3 kD = vec3(1.0) - kS;
kD *= 1.0 - metallic;
float NdotL = max(dot(N, L), 0.0);
Lo += (kD * albedo / PI + specular) * radiance * NdotL;
vec3 ambient = vec3(0.03) * albedo * ao;
vec3 color = ambient + Lo;
color = color / (color + vec3(1.0));
color = pow(color, vec3(1.0/2.2));
FragColor = texture(texture_diffuse1, ourTexCoord) * vec4(color, 0.0);
}