#version 330 core out vec4 FragColor; in vec2 ourTexCoord; in vec3 ourNormCoord; in vec3 WorldPos; // TODO: make temporary hard coded world/camera pos dynamic //uniform vec3 WorldPos ; uniform vec3 CameraPos; uniform int tick; //vec3 WorldPos = vec3(0.0f, 0.0f, 0.0f); //vec3 CameraPos = vec3(0.0f, 0.0f, -1.0f); //TODO: make these values rely on associated textures. //vec3 albedo = vec3(0.8f, 0.8f, 0.8f); //float metallic = sin(tick / 60 * 0.3f); //float roughness = sin(tick / 60 * 0.3f); //float ao = sin(tick / 60 * 0.8f); //float metallic = 0.3f; //float roughness = 0.3f; //float ao = 0.8f; // Handle multiple textures from the Mesh Object (Might not even be used) uniform sampler2D texture_diffuse1; uniform sampler2D texture_diffuse2; uniform sampler2D texture_rma1; // PBR functions from learnOpenGL.com const float PI = 3.14159265359; vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } void main() { vec3 albedo; albedo.r = pow(texture(texture_diffuse1, ourTexCoord).r, 2.2); albedo.g = pow(texture(texture_diffuse1, ourTexCoord).g, 2.2); albedo.b = pow(texture(texture_diffuse1, ourTexCoord).b, 2.2); float roughness = texture(texture_rma1, ourTexCoord).r; float metallic = texture(texture_rma1, ourTexCoord).g; float ao = texture(texture_rma1, ourTexCoord).b; // Establish ambient lighting float ambientStrength = 0.1; // Establish a temporary hard coded light position vec3 lightPosition = vec3( (sin(tick / 1000.0)*2), 1 + sin(tick / 600.0)*2, 2.0); //vec3 lightColor = vec3(1.0, 1.0, 1.0) - sin(tick / 90); vec3 lightColor = vec3(23.47, 21.31, 20.79); // Normal light maths vec3 N = normalize(ourNormCoord); vec3 V = normalize(CameraPos - WorldPos); vec3 Lo = vec3(0.0f); //TODO: Loop through the code up to ambient definition for each light vec3 L = normalize(lightPosition - WorldPos); vec3 H = normalize(V - L); float distance = length(lightPosition - WorldPos); float attenuation = 1.0 / (distance * distance); vec3 radiance = lightColor * attenuation; //Cook-Torrence BRDF vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0); float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; vec3 specular = numerator / denominator; //Next bit vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - metallic; float NdotL = max(dot(N, L), 0.0); Lo += (kD * albedo / PI + specular) * radiance * NdotL; vec3 ambient = vec3(0.03) * albedo * ao; vec3 color = ambient + Lo; color = color / (color + vec3(1.0)); color = pow(color, vec3(1.0/2.2)); FragColor = vec4(color, 0.0); }